您好、欢迎来到现金彩票网!
当前位置:2019欢乐棋牌 > 周期 >

怎么判断是不是周期函数

发布时间:2019-07-05 03:22 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  判断周期函数的方法,一般是根据定义。即对函数f(x),如果存在常数T(T≠0),使得当x取定义域内的每一个值时,均有f(x+T)=f(x)成立,则称f(x)是周期为T的周期函数【当然,任何一个常数kT(k∈Z且k≠0)均为其周期。

  周期函数:对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

  判断周期函数的方法,一般是根据定义。即对函数f(x),如果存在常数T(T≠0),使得当x取定义域内的每一个值时,均有f(x+T)=f(x)成立,则称f(x)是周期为T的周期函数【当然,任何一个常数kT(k∈Z且k≠0)均为其周期】。

  (2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

  (4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

  (5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

  (2)根据定义讨论函数的周期性可知非零实数T在关系式f(x+T)= f(x)中是与x无关的,故讨论时可通过解关于T的方程f(x+T)- f(x)=0,若能解出与x无关的非零常数T便可断定函数f(x)是周期函数,若这样的T不存在则f(x)为非周期函数。

  (3)一般用反证法证明。(若f(x)是周期函数,推出矛盾,从而得出f(x)是非周期函数)。

  证:假设f(x)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(x),当x=0时,f(x)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(x)与f(x+T)= f(x)矛盾,∴f(x)是非周期函数。

  判断周期函数的方法,一般是根据定义。即对函数f(x),如果存在常数T(T≠0),使得当x取定义域内的每一个值时,均有f(x+T)=f(x)成立,则称f(x)是周期为T的周期函数【当然,任何一个常数kT(k∈Z且k≠0)均为其周期】。

  对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

  设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。

  由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。

  解:判断周期函数的方法,一般是根据定义。即对函数f(x),如果存在常数T(T≠0),使得当x取定义域内的每一个值时,均有f(x+T)=f(x)成立,则称f(x)是周期为T的周期函数【当然,任何一个常数kT(k∈Z且k≠0)均为其周期】。本题中,设y=xcosx=f(x),x∈R,假设f(x)是周期为T的周期函数,则f(x)=f(x+T)=(x+T)cos(x+T)=xcos(x+T)+Tcos(x+T)=xcosx。显然,只有T=0时,对任意x才能成立。故,y=xcosx不是周期函数。供参考啊。

http://herdesignsnj.com/zhouqi/155.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有